일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
- CSS
- DP
- 파이썬
- 파이썬입출력
- **kwargs
- wecode
- RESTfulAPI
- 파이썬문법
- QuerySet
- decorator
- 파이썬리스트컴프리헨션
- 코딩테스트파이썬
- docker
- 인증인가
- promise
- 자바스크립트
- 백준
- *args
- django
- 자료구조
- clone-coding
- 해시충돌
- 윈도우우분투듀얼부팅
- 알고리즘
- 리스트컴프리헨션
- clone coding
- Python
- bcrypt
- 인터넷 네트워크
- JavaScript
- Today
- Total
목록파이썬 (12)
개발기록장
www.acmicpc.net/problem/11053 11053번: 가장 긴 증가하는 부분 수열 수열 A가 주어졌을 때, 가장 긴 증가하는 부분 수열을 구하는 프로그램을 작성하시오. 예를 들어, 수열 A = {10, 20, 10, 30, 20, 50} 인 경우에 가장 긴 증가하는 부분 수열은 A = {10, 20, 10, 30, 20, 50} 이 www.acmicpc.net 문제 수열 A가 주어졌을 때, 가장 긴 증가하는 부분 수열을 구하는 프로그램을 작성하시오. 예를 들어, 수열 A = {10, 20, 10, 30, 20, 50} 인 경우에 가장 긴 증가하는 부분 수열은 A = {10, 20, 10, 30, 20, 50} 이고, 길이는 4이다. 입력 첫째 줄에 수열 A의 크기 N (1 ≤ N ≤ 1,0..
www.acmicpc.net/problem/2193 2193번: 이친수 0과 1로만 이루어진 수를 이진수라 한다. 이러한 이진수 중 특별한 성질을 갖는 것들이 있는데, 이들을 이친수(pinary number)라 한다. 이친수는 다음의 성질을 만족한다. 이친수는 0으로 시작하지 않 www.acmicpc.net 문제 0과 1로만 이루어진 수를 이진수라 한다. 이러한 이진수 중 특별한 성질을 갖는 것들이 있는데, 이들을 이친수(pinary number)라 한다. 이친수는 다음의 성질을 만족한다. 이친수는 0으로 시작하지 않는다. 이친수에서는 1이 두 번 연속으로 나타나지 않는다. 즉, 11을 부분 문자열로 갖지 않는다. 예를 들면 1, 10, 100, 101, 1000, 1001 등이 이친수가 된다. 하지만 ..
www.acmicpc.net/problem/2133 2133번: 타일 채우기 3×N 크기의 벽을 2×1, 1×2 크기의 타일로 채우는 경우의 수를 구해보자. www.acmicpc.net 문제 3×N 크기의 벽을 2×1, 1×2 크기의 타일로 채우는 경우의 수를 구해보자. 입력 첫째 줄에 N(1 ≤ N ≤ 30)이 주어진다. 출력 첫째 줄에 경우의 수를 출력한다. 예제 입력 2 예제 출력 3 힌트 아래 그림은 3×12 벽을 타일로 채운 예시이다. 풀이 2×N 문제와 비슷할 줄 알았는데, 하나씩 직접 그려보니까 차이점이 있었다. 우선, 타일의 크기가 2×1, 1×2 두 가지인데, 이 타일로는 N이 홀수일 땐 벽을 완벽히 채울 수 있는 경우가 없다. 따라서 N이 홀수면 무조건 dp[N] = 0 이다. 이제..
www.acmicpc.net/problem/1699 1699번: 제곱수의 합 어떤 자연수 N은 그보다 작거나 같은 제곱수들의 합으로 나타낼 수 있다. 예를 들어 11=32+12+12(3개 항)이다. 이런 표현방법은 여러 가지가 될 수 있는데, 11의 경우 11=22+22+12+12+12(5개 항)도 가능하다 www.acmicpc.net 문제 어떤 자연수 N은 그보다 작거나 같은 제곱수들의 합으로 나타낼 수 있다. 예를 들어 11=32+12+12(3개 항)이다. 이런 표현방법은 여러 가지가 될 수 있는데, 11의 경우 11=22+22+12+12+12(5개 항)도 가능하다. 이 경우, 수학자 숌크라테스는 “11은 3개 항의 제곱수 합으로 표현할 수 있다.”라고 말한다. 또한 11은 그보다 적은 항의 제곱수 ..